leetcode 453 题解
数学题。

数学题。

题目

给你一个长度为 n 的整数数组,每次操作将会使 n - 1 个元素增加 1 。返回让数组所有元素相等的最小操作次数。

示例 1:
输入:nums = [1,2,3]
输出:3
解释:
只需要3次操作(注意每次操作会增加两个元素的值):
[1,2,3] => [2,3,3] => [3,4,3] => [4,4,4]

示例 2:
输入:nums = [1,1,1]
输出:0

提示:
n == nums.length
1 <= nums.length <= $10^5$
$-10^9$ <= nums[i] <= $10^9$
答案保证符合 32-bit 整数

思路

  1. 首先想到,如果考虑所有数之间的差值,那么n-1个数加1,其实就是1个数减1。所以思路就变成了,在每次循环时,找到最大的数,对它减1,直到最小值和最大值之间的差距为0。这种想法当然是可行的,但是会超时。
  2. 然后想到,每次应该对最大的数减去最小数与最大数之间的差值,即 $\text{nums}[\text{max_index}]-=|\text{max}(\text{nums})-\text{min}(\text{nums})|$。这样也会超时,因为每次减去差值之后,需要重新循环来寻找最大值。
  3. 最后改进的思路就是,找出最小值,遍历数组中的每一个数,每个数与最小值之间的差值的和,即为要减去的值的总数。
    $$\text{count}=\sum_{i=0}^{n-1} \text{nums}[i]-\text{min}(\text{nums})$$

示例代码

1
2
3
4
5
6
7
8
9
10
11
class Solution {
public:
int minMoves(vector<int>& nums) {
int size=nums.size(), gmin=INT_MAX, count=0;
auto min_it = min_element(nums.begin(), nums.end()); gmin=*min_it;
for(int i=0;i<size;i++) {
count+=nums[i]-gmin;
}
return count;
}
};